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Università degli Studi di Bergamo

and

PIERANGELA SAMARATI
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The impact of privacy requirements in the development of modern applications is increasing very
quickly. Many commercial and legal regulations are driving the need to develop reliable solutions
for protecting sensitive information whenever it is stored, processed, or communicated to external
parties. To this purpose, encryption techniques are currently used in many scenarios where data
protection is required since they provide a layer of protection against the disclosure of personal
information, which safeguards companies from the costs that may arise from exposing their data
to privacy breaches. However, dealing with encrypted data may make query processing more
expensive.

In this paper, we address these issues by proposing a solution to enforce privacy of data col-
lections that combines data fragmentation with encryption. We model privacy requirements as
confidentiality constraints expressing the sensitivity of attributes and their associations. We then
use encryption as an underlying (conveniently available) measure for making data unintelligible,
while exploiting fragmentation as a way to break sensitive associations among attributes. We
formalize the problem of minimizing the impact of fragmentation in terms of number of fragments
and their affinity and present two heuristic algorithms for solving such problems. We also discuss
experimental results comparing the solutions returned by our heuristics with respect to optimal
solutions, which show that the heuristics, while guaranteeing a polynomial-time computation cost
are able to retrieve solutions close to optimum.
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1. INTRODUCTION

Information is today probably the most important and valued resource. Private
and governmental organizations are increasingly gathering and maintaining vast
amounts of data, which often include sensitive personally identifiable information.
In such a scenario guaranteeing the privacy of the data, be them stored in the
system or communicated to external parties, becomes a primary requirement.

Individuals, privacy advocates, and legislators are today putting more and more
attention on the support of privacy over collected information. Regulations are in-
creasingly being established responding to these demands, forcing organizations to
provide privacy guarantees over sensitive information when storing, processing or
sharing it with others. Most recent regulations (e.g., [CA SB 1386 2002] and [Per-
sonal Data Protection Code 2003]) require that specific categories of data (e.g.,
data disclosing health and sex life, or data such as ZIP and date of birth that can
be exploited to uniquely identify an individual [Samarati 2001]) be either encrypted
or kept separate from other personally identifiable information (to prevent their as-
sociation with specific individuals). Information privacy guarantees may also derive
from the need of preventing possible abuses of critical information. For instance,
the “Payment Card Industry (PCI) Data Security Standard” [PICDSS 2006] forces
all the business organizations managing credit card information (e.g., VISA and
MasterCard) to apply encryption measures when storing data. The standard also
explicitly forbids the use of storage encryption as natively offered by operating sys-
tems, requiring that access to the encryption keys be separated from the operating
system services managing user identities and privileges.

This demand for encryption is luckily coupled today with the fact that the real-
ization of cryptographic functions presents increasingly lower costs in a computer
architecture, where the factor limiting system performances is typically the capac-
ity of the channels that transfer information within the system and among separate
systems. Cryptography then becomes an inexpensive tool that supports the pro-
tection of privacy when storing or communicating information.

From a data access point of view, however, dealing with encrypted information
represents a burden since encryption makes it not always possible to efficiently
execute queries and evaluate conditions over the data. As a matter of fact, a
straightforward approach to guarantee privacy to a collection of data could consist
in encrypting all the data. This technique is, for example, adopted in the database
outsourcing scenario [Damiani et al. 2003; Hacigümüs et al. 2002(a)], where a pro-
tective layer of encryption is wrapped around sensitive data, thus counteracting
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 1. Data protection scenario

outside attacks as well as the curiosity from the server itself. The assumption un-
derlying approaches applying such an encryption wrapper is that all the data are
equally sensitive and therefore encryption is a price to be paid to protect them.
This assumption is typically an overkill in many situations where data are not
sensitive per se; what is sensitive is their association with other data. As a simple
example, in a hospital the list of illnesses cured or the list of patients could be made
publicly available, while the association of specific illnesses to individual patients is
sensitive and must be protected. Hence, there is no need to encrypt both illnesses
and patients if there are alternative ways to protect the association between them.

In this paper, we propose an approach that couples encryption together with
data fragmentation. We apply encryption only when explicitly demanded by the
privacy requirements. The combined use of encryption and data fragmentation
has first been proposed in the context of data outsourcing [Aggarwal et al. 2005].
In that proposal, privacy requirements are enforced by splitting information over
two independent database servers (so to break associations of sensitive information)
and by encrypting information whenever necessary. While presenting an interesting
idea, the approach in [Aggarwal et al. 2005] suffers from several limitations. The
main limitation is that privacy relies on the complete absence of communication
between the two servers, which have to be completely unaware of each other. This
assumption is clearly too strong and difficult to enforce in real environments. A
collusion among the servers (or the users accessing them) easily breaches privacy.
Also, the assumption of two servers limits the number of associations that can be
solved by fragmenting data, often forcing the use of encryption.

Our solution, sketched in Figure 1, overcomes the above limitations as follows.
The information to be protected is first split into different fragments (i.e., different
pieces of information) in such a way to break the sensitive associations represented
through confidentiality constraints and to minimize the amount of information rep-
resented only in encrypted format. The resulting fragments may be stored at the
same server or at different servers. Finally, the encryption key is given to the
authorized users needing to access the information. Users that do not know the
encryption key as well as the storing server(s) are able neither to access sensitive
information nor to reconstruct the sensitive associations.

We frame our work in the context of relational databases since they are by far
the most common solution for the management of the data subject of privacy
regulations. Also, they are characterized by a clear data model and a simple query
language that facilitate the design of a solution. We note, however, that our model
could be easily adapted to the protection of data represented with other data models
(e.g., records in files or XML documents).
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The contribution of this paper can be summarized as follows. First, we intro-
duce confidentiality constraints as a simple, yet powerful, way to capture privacy
requirements (Section 2). Second, we provide a model formalizing the applica-
tion of data fragmentation and encryption, which captures properties related to
the correct representation of the data while minimizing encryption and fragmen-
tation (Sections 3-4). Third, we propose two heuristic algorithms for the concrete
identification of a fragmentation that satisfies the properties specified. In partic-
ular, the first algorithm computes a solution in such a way to avoid an excessive
fragmentation of the data, that is, to limit the number of fragments (Section 5).
The second algorithm is based on the definition of affinity between attributes and
computes a fragmentation that exhibits good affinity value (Sections 6-7). Fourth,
we illustrate how queries formulated on the original data are mapped into equiv-
alent queries operating on fragments (Section 8). Fifth, to empirically verify the
soundness of the technique proposed, we implement the two heuristic algorithms
and compare the computed results in terms of both quality of the solution obtained
and computational time required (Section 9).

2. CONFIDENTIALITY CONSTRAINTS

We model, in a quite simple and powerful way, the privacy requirements through
confidentiality constraints, which are sets of attributes, as follows.

Definition 2.1 Confidentiality constraint. Let A be a set of attributes, a confi-
dentiality constraint is a subset c ⊆ A.

The semantics of a confidentiality constraint c is that the (joint) visibility of val-
ues of all the attributes in c should be protected, that is, the association between
all their values should not be disclosed (e.g., triples {DoB,ZIP,Illness} are consid-
ered sensitive and cannot be released). Disjoint subsets of the attributes, unless
protected by other constraints, can be released (e.g., pair {DoB,ZIP} and individ-
ual illness’s values can be separately released). When the constraint is a singleton
set, the semantics is that the individual attribute must be protected, that is, the
list of the attribute values itself is confidential (e.g., phone numbers or email ad-
dresses can be considered sensitive values even if not associated with any identifying
information).

While simple, the definition above allows the expression of the different confiden-
tiality requirements that may need to be considered. Note that constraints specified
on the association among attributes can derive from different requirements: they
can correspond to explicit protection of an association (as in the case of names
and illnesses above) or to associations that could cause inference on other sensitive
information. As an example of the latter, suppose that the names of patients are
considered sensitive, and therefore cannot be stored in the clear, and that the as-
sociation of DoB together with the ZIP code can work as a quasi-identifier [Ciriani
et al. 2007(b); Samarati 2001] (i.e., DoB and ZIP can be used, possibly in association
with external information, to help identifying patients and therefore to infer, or re-
duce uncertainty about, their names). This inference channel can be simply blocked
by specifying a constraint protecting the association of DoB with the ZIP code. As
another example, consider the case where attribute Name is not considered sensitive,
but its association with Illness is. Suppose again that DoB together with the ZIP
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MedicalData

SSN Name DoB ZIP Illness Physician

123-45-6789 A. Hellman 81/01/03 94142 hypertension M. White
987-65-4321 B. Dooley 53/10/07 94141 obesity D. Warren
246-89-1357 C. McKinley 52/02/12 94139 hypertension M. White
135-79-2468 D. Ripley 81/01/03 94139 obesity D. Warren

(a)

c0= {SSN}
c1= {Name, DoB}
c2= {Name, ZIP}
c3= {Name, Illness}
c4= {Name, Physician}
c5= {DoB, ZIP, Illness}
c6= {DoB, ZIP, Physician}

(b)

Fig. 2. An example of plaintext relation (a) and its well defined constraints (b)

code can work as a quasi-identifier, that is, linking them with external information
one can restrict uncertainty on the corresponding patients’ names. In this case, an
association constraint will be specified protecting the association among DoB, ZIP,
and Illness, implying that the three attributes should never be accessible together
in the clear. The definition of confidentiality constraints is then a complex problem
that should take into account the different relationships among attributes. Such a
problem is however outside the scope of this paper and we assume that the data
owner correctly defines confidentiality constraints.

We are interested in enforcing a set of well defined confidentiality constraints,
formally defined as follows.

Definition 2.2 Well defined constraints. A set of confidentiality constraints C =
{c1, . . . , cm} is said to be well defined iff ∀ci, cj ∈ C, i 6= j, ci 6⊂ cj .

According to this definition, a set of constraints C over A cannot contain a con-
straint that is a subset of another constraint. The rationale behind this property
is that, whenever there are two constraints ci, cj and ci is a subset of cj , the satis-
faction of constraint ci implies the satisfaction of constraint cj (see Section 3), and
therefore cj is redundant.

To model the problem of enforcing a set of well defined confidentiality constraints,
we assume standard notations from the relational database model. Formally, let
A be a set of attributes and D be a set of domains. A relation schema R is a
finite set of attributes {a1, . . . , an} ⊆ A, where each ai is defined on a domain
Di ∈ D, i = 1, . . . , n. Notation R(a1, . . . , an) represents a relation schema R over
the set {a1, . . . , an} of attributes. A tuple t over a set of attributes {a1, . . . , an}
is a function that associates with each attribute ai a value v ∈ Di. Notation t[a ]
denotes value v associated with attribute a in t. A relation r over relation schema
R(a1, . . . , an) is a set of tuples over the set of attributes {a1, . . . , an}. In the
following, when clear from the context, we will use R to denote either the relation
schema R or the set of attributes in R.

For simplicity, and consistently with other proposals [Aggarwal et al. 2005; Sama-
rati 2001], we consider a single relation r, over a relation schema R(a1, . . . , an),
containing all the sensitive information that needs to be protected.

Example 2.3. Figure 2 illustrates an example of relation together with some
confidentiality constraints on it: c0 states that the list of SSNs of patients is consid-
ered sensitive; c1, . . . , c4 state that the association of patients’ names with any other
piece of stored information is considered sensitive; c5 and c6 state that DoB and ZIP
together can be exploited to infer the identity of patients (i.e., they can work as a
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f e
1

salt enc Name

s1 α A. Hellman
s2 β B. Dooley
s3 γ C. McKinley
s4 δ D. Ripley

(a)

f e
2

salt enc DoB ZIP

s5 ε 81/01/03 94142
s6 ζ 53/10/07 94141
s7 η 52/02/12 94139
s8 θ 81/01/03 94139

(b)

f e
3

salt enc Illness Physician

s9 ι hypertension M. White
s10 κ obesity D. Warren
s11 λ hypertension M. White
s12 µ obesity D. Warren

(c)

Fig. 3. An example of physical fragments for the relation in Figure 2(a)

quasi-identifier), consequently their association with other pieces of information is
considered sensitive.

Note that also the association of patients’ Name and SSN is sensitive and should be
protected. However, such a constraint is not specified since it is redundant, given
that SSN by itself has been declared sensitive (c0): protecting SSN as an individual
attribute implies automatic protection of its associations with any other attribute.

3. FRAGMENTATION AND ENCRYPTION FOR CONSTRAINT SATISFACTION

Our approach to satisfy confidentiality constraints is based on the use of two tech-
niques: encryption and fragmentation. Consistently with how the constraints are
specified, encryption applies at the attribute level, that is, it involves an attribute
in its entirety. Encrypting an attribute means encrypting (tuple by tuple) all its
values. To protect encrypted values from frequency attacks [Schneier 1996], we
assume that a salt, which is a randomly chosen value, is applied to each encryption
(similarly to the use of nonces in the protection of messages from replay attacks).
Fragmentation, like encryption, applies at the attribute level, that is, it involves
an attribute in its entirety. Fragmenting means splitting sets of attributes so that
they are not visible together, that is, the associations among their values are not
available without access to the encryption key.

It is straightforward to see that singleton constraints can be solved only by en-
cryption. By contrast, an association constraint could be solved by either: i) en-
crypting any (one suffices) of the attributes involved in the constraint, so to prevent
joint visibility, or ii) fragmenting the attributes involved in the constraint so that
they are not visible together. In the following, we use the term fragment to denote
any subset of a given set of attributes. A fragmentation is a set of fragments, as
captured by the following definition.

Definition 3.1 Fragmentation. Let R be a relation schema, a fragmentation of
R is a set of fragments F={F 1, . . . ,Fm}, where F i ⊆ R, i = 1, . . . , m.

For instance, with respect to the plaintext relation in Figure 2(a), a possible frag-
mentation is F={{Name},{DoB,ZIP},{Illness,Physician}}.

At the physical level, a fragmentation translates to a combination of fragmen-
tation and encryption. Each fragment F is mapped into a physical fragment con-
taining all the attributes of F in the clear, while all the other attributes of R are
encrypted. The reason for reporting all the original attributes (in either encrypted
or clear form) in each of the physical fragments is to guarantee that any query can
be executed by querying a single physical fragment (see Section 8). For the sake
of simplicity and efficiency, we assume that all the attributes not appearing in the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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INPUT
A relation r over schema R
C = {c1, . . . , cm} /* well defined constraints */
OUTPUT
A set of physical fragments {Fe

1, . . . , Fe
i}

A set of relations {f e
1, . . . , f e

i} over schemas {Fe
1, . . . , Fe

i}

MAIN
CF := {c∈C : |c | >1} /* association constraints */
AF := {a∈R: {a}6∈C}
F := fragment(AF , CF ) /* function fragment computes a correct fragmentation F of R*/
for each F={ai1 , . . . , ail

} ∈F do /* define physical fragments */
define relation Fe with schema: Fe(salt, enc, ai1 , . . . , ail

)
for each t∈r do /* populate physical fragments instances */

te[salt] := generatesalt(F ,t )
te[enc] := Ek(t [aj1 . . . ajp ] ⊕te[salt]) /* {aj1 , . . . , ajp}=R−F */
for each a∈F do te[a ] := t [a ]
insert te in f e

Fig. 4. Algorithm that correctly fragments R and populates the corresponding physical fragments

clear in a fragment are encrypted all together (encryption is applied on subtuples).
Physical fragments are then defined as follows.

Definition 3.2 Physical fragment. Let R be a relation schema, and
F={F 1,. . . ,Fm} be a fragmentation of R. For each F i={ai1 , . . . , ain} ∈ F ,
the physical fragment of R over F i is a relation schema F e

i (salt,enc,ai1 , . . . , ain),
where salt is the primary key, enc represents the encryption of all the attributes
of R that do not belong to the fragment, combined before encryption in a binary
XOR (symbol ⊕) with the salt.

At the level of instance, given a fragment F i={ai1 , . . . , ain}, and a relation r over
schema R, the physical fragment F e

i of F i is such that each plaintext tuple t ∈ r is
mapped into a tuple te ∈ f e

i where f e
i is a relation over F e

i and:

—te[enc] = Ek(t [R− Fi] ⊕ te[salt])
—te[aij ] = t [aij ], j = 1, . . . , n

Figure 3 illustrates an example of physical fragments for the relation schema in
Figure 2(a) that correctly enforce the well defined constraints in Figure 2(b).

The algorithm in Figure 4 shows the construction and population of physical
fragments to be executed at initialization. When the size of the attributes exceeds
the size of an encryption block, we assume that the encryption of the protected at-
tributes is performed by applying the Cipher Block Chaining (CBC) mode [Schneier
1996], with the salt used as the Initialization Vector (IV), or, alternatively, we can
use a semantically secure encryption function. In the CBC mode, the clear text of
the first block is encrypted after it has been combined in binary XOR with the IV.

Note that the salts, which we conveniently use as primary keys of physical frag-
ments (ensuring no collision in their generation), need not be secret, because knowl-
edge of the salts does not help in attacking the encrypted values as long as the
encryption algorithm is secure and the key remains protected.

Given a relation r over schema R and a set of confidentiality constraints C on it,
our goal is to produce a fragmentation that satisfies the constraints. However, we
must also ensure that no constraint can be violated by recombining two or more
fragments. In other words, there cannot be attributes that can be exploited for
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linking. Since encryption is differentiated by the use of the salt, the only attributes
that can be exploited for linking are the plaintext attributes. Consequently, en-
suring that fragments are protected from linking translates into requiring that no
attribute appears in clear form in more than one fragment, as formally captured
by the following definition.

Definition 3.3 Fragmentation correctness. Let R be a relation schema, F be a
fragmentation of R, and C be a set of well defined constraints over R. F correctly
enforces C iff the following conditions are satisfied:

(1) ∀F ∈ F , ∀c ∈ C : c 6⊆ F (each individual fragment satisfies the constraints);
(2) ∀F i,F j ∈ F , i 6= j : F i∩F j = ∅ (fragments do not have attributes in common).

Note that condition 1, requiring fragments not to be a superset of any constraint,
implies that attributes appearing in singleton constraints do not appear in any
fragment (i.e., as already noted, they appear only in encrypted form).

4. MINIMAL FRAGMENTATION

The availability of plaintext attributes in a fragment permits an efficient execution
of queries. Therefore, we aim at minimizing the number of attributes that are not
represented in the clear in any fragment, because queries using those attributes will
be generally processed inefficiently. In other words, we prefer fragmentation over
encryption whenever possible and always solve association constraints via fragmen-
tation.

The requirement on the availability of a plain representation for the maximum
number of attributes can be captured by imposing that any attribute not involved
in a singleton constraint must appear in the clear in at least one fragment. This
requirement is formally represented by the definition of maximal visibility as follows.

Definition 4.1 Maximal visibility. Let R be a relation schema, and C be a set of
well defined constraints. A fragmentation F of R maximizes visibility iff ∀a∈R,
{a} 6∈ C: ∃F ∈ F such that a∈F .

Note that the combination of maximal visibility together with the second con-
dition of Definition 3.3 imposes that each attribute that does not appear in a
singleton constraint must appear in the clear in exactly one fragment (i.e., at least
for Definition 4.1, at most for Definition 3.3).

Another important aspect to consider when fragmenting a relation to satisfy a
set of constraints is to avoid excessive fragmentation. As a matter of fact, the avail-
ability of more attributes in the clear in a single fragment allows a more efficient
execution of queries on the fragment. Indeed, a straightforward approach for pro-
ducing a fragmentation that satisfies the constraints while maximizing visibility is
to define as many (singleton) fragments as the number of attributes not appearing
in singleton constraints. Such a solution, unless demanded by the constraints, is
however undesirable since it makes any query involving conditions on more than
one attribute inefficient.

We are interested in finding a fragmentation that makes query execution efficient.
A simple strategy to achieve this goal consists in finding a minimal fragmentation,
that is, a correct fragmentation that maximizes visibility, while minimizing the
number of fragments. This problem can be formalized as follows.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Problem 4.2 Minimal fragmentation. Given a relation schema R, a set C of well
defined constraints over R, find a fragmentation F of R such that all the following
conditions hold:

(1) F correctly enforces C (Definition 3.3);
(2) F maximizes visibility (Definition 4.1);
(3) @F ′ satisfying the two conditions above such that the number of fragments of

F ′ is less than the number of fragments of F .

The minimal fragmentation problem is NP-hard , as formally stated by the fol-
lowing theorem

Theorem 4.3. The minimal fragmentation problem is NP-hard.

Proof. The proof is a reduction from the NP-hard problem of minimum hy-
pergraph coloring [Garey and Johnson 1979], which can be formulated as follows:
given a hypergraph H(V, E), determine a minimum coloring of H, that is, assign to
each vertex in V a color such that adjacent vertices have different colors, and the
number of colors is minimized .

Given a relation schema R and a set C of well defined constraints, the correspon-
dence between the minimal fragmentation problem and the hypergraph coloring
problem can be defined as follows. Any vertex vi of the hypergraph H corresponds
to an attribute ai ∈ R such that {ai}6∈C. Any edge ei in H, which connects
vi1 , . . . , vic , corresponds to a constraint ci={ai1 ,. . . ,aic} ∈ C and ci is not a sin-
gleton constraint. A fragmentation F={F 1(a11 , . . . , a1k

), . . . ,F p(ap1 , . . . , apl
)} of

R satisfying all constraints in C corresponds to a solution S for the correspond-
ing hypergraph coloring problem. Specifically, S uses p colors in such a way that
all vertices corresponding to attributes in F i are colored with the i-th color, for
i = 1, . . . , p. As a consequence, any algorithm finding a minimal fragmentation can
be exploited to solve the hypergraph coloring problem.

The hypergraph coloring problem has been extensively studied in the literature,
reaching interesting theoretical results. In particular, assuming NP 6= ZPP , there
are no polynomial time approximation algorithms for coloring k-uniform hyper-
graphs with approximation ratio O(n1−ε) for any fixed ε > 0 [Krivelevich and
Sudakov 2003; Hofmeister and Lefmann 1998].1 In the next section, we present a
heuristic for solving Problem 4.2. The heuristic is based on the definition of vec-
tor minimality, which is then exploited to efficiently find a correct fragmentation
maximizing visibility.

5. A HEURISTIC APPROACH TO MINIMIZE FRAGMENTATION

We first characterize the set of all possible fragmentations by defining a dominance
relationship among them and by introducing the definition of vector-minimal frag-
mentation. We then describe a heuristic algorithm for Problem 4.2 that computes
a vector-minimal fragmentation.

1In a minimization framework, an approximation algorithm with approximation ratio p guarantees
that the cost C of its solution is such that C/C∗ ≤ p, where C∗ is the cost of an optimal
solution [Garey and Johnson 1979]. On the contrary, we cannot perform any evaluation on the
result of a heuristic.
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5.1 Vector-minimal fragmentation

To formally define the vector-minimal fragmentation, we first introduce the concept
of fragment vector as follows.

Definition 5.1 Fragment vector. Let R be a relation schema, and F=
{F 1, . . . ,Fm} be a correct fragmentation of R. The fragment vector VF of F is
a vector of fragments with an element VF [a ] for each a ∈ ⋃m

i=1 F i, where the value
of VF [a ] is the unique fragment F j∈F containing attribute a .

Example 5.2. Let F = {{Name},{DoB,ZIP},{Illness,Physician}} be a frag-
mentation of the relation schema in Figure 2(a). The fragment vector is the vector
VF such that:

—VF [Name]={Name};
—VF [DoB]=VF [ZIP]={DoB,ZIP};
—VF [Illness]=VF [Physician]={Illness,Physician}.

Fragment vectors can be exploited to define a partial order between fragmenta-
tions as follows.

Definition 5.3 Dominance. Let R be a relation schema, and F and F ′ be two
fragmentations of R maximizing visibility. Let A be the (equal) set of attributes
in the two fragmentations. We say that F ′ dominates F , denoted F¹F ′, iff
VF [a ]⊆VF ′ [a ], for all a ∈ A. We say F ≺ F ′ iff F¹F ′ and F 6= F ′.

Definition 5.3 states that fragmentation F ′ dominates fragmentation F if F ′ can
be computed from F by merging two (or more) fragments composing F .

Example 5.4. Let F1={{Name}, {DoB,ZIP}, {Illness,Physician}} and
F2={{Name}, {DoB}, {ZIP}, {Illness,Physician}} be two fragmentations of the
relation schema in Figure 2(a). Since F1 can be obtained from F2 by merging
fragments {DoB} and {ZIP}, it results that F2≺F1 (see Definition 5.3).

We can formally define a vector-minimal fragmentation as a fragmentation F
such that it is correct, it maximizes visibility, and all fragmentations that can be
obtained from F by merging any two fragments in F violate at least one constraint.

Definition 5.5 Vector-minimal fragmentation. Let R be a relation schema, C be
a set of well defined constraints, and F be a fragmentation of R. F is a vector-
minimal fragmentation iff all the following conditions are satisfied:

(1) F correctly enforces C (Definition 3.3);
(2) F maximizes visibility (Definition 4.1);
(3) @F ′ satisfying the two conditions above such that F≺F ′.

According to this definition of minimality, it easy to see that while a minimal
fragmentation is also vector-minimal, the vice versa is not necessarily true.

Example 5.6. Consider fragmentations F1 and F2 of Example 5.4, and the
set of constraints in Figure 2(b). Since F2≺F1, F2 is not vector-minimal. By
contrast, F1 is vector-minimal. As a matter of fact, F1 contains all attributes
of relation schema MedicalData in Figure 2(a), but SSN (maximal visibility);
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Function 5.7 Vector-minimal fragmentation.

FRAGMENT(A ToPlace,C ToSolve)
F := ∅
for each a∈A ToPlace do /* initialize arrays Con[] and N con[] */

Con[a ] := {c ∈ C ToSolve| a ∈ c}
N con[a ] := |Con[a ]|

repeat
if C ToSolve 6= ∅ then

let attr be an attribute with the maximum value of N con[]
for each c ∈ (Con[attr ] ∩ C ToSolve) do

C ToSolve := C ToSolve − {c} /* adjust the constraints */
for each a ∈ c do N con[a ] := N con[a ]−1 /* adjust array N con[] */

else /* since all the constrains are satisfied, choose any attribute in A ToPlace */
let attr be an attribute in A ToPlace

endif
A ToPlace := A ToPlace − {attr}
inserted := false /* try to insert attr into the existing fragments */
for each F ∈ F do /* evaluate if F ∪ {attr} satisfies the constraints */

satisfies := true
for each c ∈ Con[attr ] do

if c ⊆ (F ∪ {attr}) then
satisfies := false /* choose the next fragment */
break

endif
if satisfies then

F := F ∪ {attr} /* attr has been inserted into F */
inserted := true
break

endif
if not inserted then /* insert attr into a new fragment */

add {attr} to F
endif

until A ToPlace = ∅
return(F)

Fig. 5. Function that finds a vector-minimal fragmentation

satisfies all constraints in Figure 2(b) (correctness); no fragmentation obtained from
it by merging any pair of fragments satisfies the constraints.

5.2 Function fragment for computing a vector-minimal fragmentation

The definition of vector-minimal fragmentation allows us to design a heuristic ap-
proach for Problem 4.2 that works in polynomial time and computes a fragmenta-
tion that, even if it is not necessarily a minimal fragmentation, it is however near
to the optimal solution, as the experimental results show (see Section 9).

Our heuristic method starts with an empty fragmentation and, at each step,
selects the attribute involved in the highest number of unsolved constraints. The
rationale behind this selection criterion is to bring all constraints to satisfaction in a
few steps. The selected attribute is then inserted into a fragment that is determined
in such a way that there is no violation of the constraints involving the attribute. If
such a fragment does not exist, a new fragment for the selected attribute is created.
The process terminates when all attributes have been inserted into a fragment.
Figure 5 illustrates function fragment that implements this heuristic method. The
function takes as input a set A ToPlace of attributes to be fragmented, and a set
C ToSolve of well defined non singleton constraints. It computes a vector-minimal
fragmentation F of A ToPlace as follows.

First, the function initializes F to the empty set and creates two arrays Con[]
ACM Journal Name, Vol. V, No. N, Month 20YY.
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F=∅
C ToSolve={c1,c2,c3,c4,c5,c6}
A ToPlace={n,d,z,i,p}

c1 c2 c3 c4 c5 c6 N con[ai]

n × × × × 4
d × × × 3
z × × × 3
i × × 2
p × × 2

ToSolve yes yes yes yes yes yes

attr = n
Con[n]={c1,c2,c3,c4}

F = {{n}}
C ToSolve = {c5,c6}
A ToPlace = {d,z,i,p}

c1 c2 c3 c4 c5 c6 N con[ai]

n X X X X 0
d X × × 2
z X × × 2
i X × 1
p X × 1

ToSolve X X X X yes yes

attr = d
Con[d]={c1,c5,c6}

F = {{n},{d}}
C ToSolve = ∅
A ToPlace = {z,i,p}

c1 c2 c3 c4 c5 c6 N con[ai]

n X X X X 0
d X X X 0
z X X X 0
i X X 0
p X X 0

ToSolve X X X X X X

attr = z
Con[z]={c2,c5,c6}

F = {{n},{d,z}}
C ToSolve = ∅
A ToPlace = {i,p}

c1 c2 c3 c4 c5 c6 N con[ai]

n X X X X 0
d X X X 0
z X X X 0
i X X 0
p X X 0

ToSolve X X X X X X

attr = i
Con[i]={c3,c5}

F = {{n},{d,z},{i}}
C ToSolve = ∅
A ToPlace = {p}

c1 c2 c3 c4 c5 c6 N con[ai]

n X X X X 0
d X X X 0
z X X X 0
i X X 0
p X X 0

ToSolve X X X X X X

attr = p
Con[p]={c4,c6}

F = {{n},{d,z},{i,p}}
C ToSolve = ∅
A ToPlace = ∅

c1 c2 c3 c4 c5 c6 N con[ai]

n X X X X 0
d X X X 0
z X X X 0
i X X 0
p X X 0

ToSolve X X X X X X

Fig. 6. An example of the execution of Function 5.7

and N con[] that contain an element for each attribute a in A ToPlace. Element
Con[a ] contains the set of constraints on a , and element N con[a ] is the number of
non solved constraints involving a (note that, at the beginning, N con[a ] coincides
with the cardinality of Con[a ]). The function then executes a repeat-until loop
ACM Journal Name, Vol. V, No. N, Month 20YY.
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that, at each iteration, places an attribute attr into a fragment as follows. If there
are constraints still to be solved (C ToSolve 6= ∅) attr is selected as an attribute
appearing in the highest number of unsolved constraints. Then, for each constraint
c in Con[attr ]∩C ToSolve, the function removes c from C ToSolve and, for each
attribute a in c , decreases N con[a ] by one. Otherwise, that is, all constraints
are solved (C ToSolve= ∅), the function chooses attr by randomly extracting an
attribute from A ToPlace. Then, the function removes attr from A ToPlace and
looks for a fragment F in F in which attr can be inserted without violating any
constraint including attr . If such a fragment F is found, attr is inserted into F ,
otherwise a new fragment {attr} is added to F . Note that the search for a fragment
terminates as soon as a fragment is found (inserted=true). Also, the control on
constraint satisfaction terminates as soon as a violation to constraints is found
(satisfies=false).

Example 5.8. Figure 6 presents the execution, step by step, of function frag-
ment applied to the example in Figure 2. Here, for simplicity, we represent at-
tributes with their initials. The left hand side of Figure 6 illustrates the evolution
of variables attr , F , C ToSolve, and A ToPlace, while the right hand side graphi-
cally illustrates the same information through a matrix with a row for each attribute
and a column for each constraint. If an attribute belongs to an unsolved constraint
ci, the corresponding cell is set to ×; otherwise, if ci is solved, the cell is set to
X. At the beginning, F is empty, all constraints are unsolved, and all attributes
need to be placed. In the first iteration, function fragment chooses attribute n,
since it is the attribute involved in the highest number of unsolved constraints. The
constraints in Con[n] become now solved, array N con[] is updated accordingly, and
fragment {n} is added to F . Function fragment proceeds in an analogous way by
choosing attributes d, z, i, and p. The final solution is represented by the relations
in Figure 3.

5.3 Correctness and complexity

The correctness and complexity of our approach are stated by the following theo-
rems.

Theorem 5.9 Correctness. Function fragment in Figure 5 terminates and
finds a vector-minimal fragmentation (Definition 5.5).

Proof. Given a relation schema R, and a set C, of well defined constraints, CF
= {c∈C : |c | >1} and AF = {a∈R: {a}6∈C}.

Function 5.7 terminates since at each iteration of the repeat-until loop an at-
tribute is extracted from A ToPlace, which is initialized to AF , and the loop is
performed until A ToPlace is not empty.

We now prove that a solution F computed by this function over AF and CF
is a vector-minimal fragmentation. According to Definition 5.5, a fragmentation
F is vector-minimal if and only if (1) it is correct, (2) it maximizes visibility, and
(3) @F ′:F≺F ′ that satisfies the two conditions above. A fragmentation F computed
by function fragment satisfies these three properties.

(1) Function fragment inserts attr into a fragment F if and only if F∪{attr}
satisfies the constraints in Con[attr ]. By induction, we prove that if F∪{attr}
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satisfies constraints in Con[attr ], it satisfies all constraints in CF .
If {attr} is the first attribute inserted into F , F∪{attr}={attr} that satisfies
all constraints in CF . Otherwise, if we suppose that F already contains at
least one attribute and that it satisfies all constraints in CF , then, by adding
attr to F the constraints that may be violated are only the constraints in
Con[attr ]. Consequently, if F∪{attr} satisfies all these constraints, it satisfies
all constraints in CF .
We can therefore conclude that F is a correct fragmentation.

(2) Since each attribute a in AF is inserted exactly into one fragment, function
fragment produces correctly a fragmentation F that satisfies the condition of
maximal visibility.

(3) By contradiction, let F ′ be a fragmentation satisfying the constraints in CF ,
maximizing visibility, and such that F≺F ′. Let VF and VF ′ be the fragment
vectors associated with F and F ′, respectively. First, we prove that F ′ contains
a fragment VF ′ [ai] that is the union of two different fragments, VF [ai] and
VF [aj ], of F . Second, we prove that function fragment cannot generate two
different fragments whose union does not violate any constraint. These two
results generate a contradiction since VF ′ [ai], which contains VF [ai]∪VF [aj ], is
a fragment of F ′, and thus it does not violate the constraints.
(a) Since F≺F ′, there exists a fragment such that VF [ai]⊂VF ′ [ai], and then

there exists an attribute aj (with j 6=i) such that aj∈VF ′ [ai] and aj 6∈VF [ai].
Note that aj 6=ai because, by definition, ai∈VF [ai] and ai∈VF ′ [ai]. VF [aj ]
and VF ′ [aj ] are the fragments that contain aj . We now show that the
whole fragment VF [aj ]⊂VF ′ [ai]. Since, aj∈VF ′ [aj ] and aj∈VF ′ [ai] we
have that VF ′ [aj ]=VF ′ [ai], but since VF [aj ]⊂VF ′ [aj ]=VF ′ [ai] we have that
(VF [ai]∪VF [aj ])⊆VF ′ [ai].

(b) Let Fh and F k be the two fragments computed by function fragment,
corresponding to VF [ai] and VF [aj ], respectively. Assume, without loss of
generality, that h<k (since the proof in the case h>k immediately follows by
symmetry). Let ak1 be the first attribute inserted into F k by the function.
Recall that the function inserts an attribute into a new fragment if and only
if the attribute cannot be inserted into the already-existing fragments (e.g.,
Fh) without violating constraints. Therefore, the set of attributes Fh∪
{ak1} violates a constraint as well as the set VF [ai]∪VF [aj ] that contains
Fh∪{ak1}.

This generates a contradiction.

We can conclude that function fragment computes a vector-minimal fragmenta-
tion.

Theorem 5.10 Complexity. Given a set C={c1, . . . , cm} of constraints and
a set A={a1, . . . , an} of attributes the complexity of function fragment(A,C) in
Figure 5 is O(n2m) in time.

Proof. To choose attribute attr from A ToPlace, in the worst case function
fragment scans array N con[], and adjusts array N con[] for each attribute involved
in at least one constraint with attr . This operation costs O(nm) for each chosen
attribute. Each attribute is then inserted into a fragment. Note that the number of
ACM Journal Name, Vol. V, No. N, Month 20YY.
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fragments is O(n) in the worst case. To choose the right fragment that will contain
attr , in the worst case the function tries to insert it into all fragments F∈F , and
compares F∪{attr} with the constraints in Con[attr ]. Since the sum of the number
of attributes in all the fragments is O(n), then O(n) attributes will be compared
with the O(m) constraints containing attr , giving, in the worst case, a O(nm)
complexity for each attr . Thus, the complexity of choosing the right fragment is
O(n2m). We can then conclude that the overall time complexity is O(n2m).

6. TAKING ATTRIBUTE AFFINITY INTO ACCOUNT

The computation of a minimal fragmentation exploits the basic principle according
to which the presence of a high number of plaintext attributes permits an effi-
cient execution of queries. Although this principle may be considered acceptable
in many situations, other criteria can also be applied for computing a fragmenta-
tion. Indeed, depending on the use of the data, it may be useful to preserve the
associations among some attributes. As an example, consider the fragmentation in
Figure 3 and suppose that physicians should be able to explore the link between a
specific Illness and the age (DoB) of patients. The computed fragmentation how-
ever does not make visible the association between Illness and DoB, thus making
the required analysis not possible (as it would violate the constraints). In this case,
a fragmentation where these two attributes are stored in clear form in the same
fragment is preferable to the computed fragmentation. The need for keeping to-
gether some specific attributes in the same fragment may not only depend on the
use of the data but also on the queries that need to be frequently executed on the
data. Indeed, given a query Q and a fragmentation F, the execution cost of Q varies
according to the specific fragment used for computing the query. This implies that,
with respect to a specific query workload, different fragmentations may be more
convenient than others in terms of query performance.

To take into consideration both the use of the data and the query workload in
the fragmentation process, we exploit the concept of attribute affinity , which is
traditionally applied to express the advantage of having pairs of attributes in the
same fragment in distributed DBMSs [Özsu and Valduriez 1999]. Attribute affinity
may be therefore adopted by schema design algorithms that use the knowledge
of a representative workload for computing a suitable partition. In our context,
attribute affinity is also a measure of how strong the need of keeping the attributes
in the same fragment is. In general, the identification of affinity values starts from a
consideration of the expected profile of queries that will be executed. By assuming
that the set of attributes in R that appear in non singleton constraints are first
arbitrarily ordered and that notation ai denotes the i-th attribute, the affinity
between attributes is represented through an affinity matrix . The matrix, denoted
M , has a row and a column for each attribute appearing in non singleton constraints,
and each cell M [ai,aj ] represents the benefit obtained by having attributes ai and aj

in the same fragment. Clearly, the affinity matrix contains only positive values and
is symmetric with respect to its main diagonal. Also, for all attributes ai, M [ai, ai]
is not defined. The affinity matrix can then be represented as a triangular matrix,
where only cells M [ai, aj ], with i < j, are represented. Figure 7 illustrates an
example of affinity matrix for relation MedicalData in Figure 2. The attributes
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n d z i p
n 10 5 25 15
d 5 20 30
z 10 5
i 15
p

Fig. 7. An example of affinity matrix

have been ordered according to the same order with which they have been listed in
the schema of the considered relation.

The consideration of attribute affinity naturally applies to fragments and frag-
mentations. Fragmentations that maintain together attributes with high affinity
are to be preferred. To reason about this, we define the concept of fragmentation
affinity . Intuitively, the affinity of a fragment is the sum of the affinity of the dif-
ferent pairs of attributes in the fragment; the affinity of a fragmentation is the sum
of the affinity of the fragments in it. The use of the sum to compose different affini-
ties represents a simple and effective mechanism, supported by the experience on
the use of this model. While other, more sophisticated, composition rules could be
adopted, we note that the use of the sum is consistent with the nature of the affinity
matrix, which aims at modeling complex relations in a compact and effective way.
The concept of fragmentation affinity is formalized as follows.

Definition 6.1 Fragmentation affinity. Let R be a relation schema, M be an
affinity matrix for R, C be a set of well defined constraints, and F={F 1, . . . ,Fn}
be a correct fragmentation of R. The affinity of F , denoted affinity(F), is defined

as: affinity(F) =
n∑

k=1

aff(F k), where aff(F k) =
∑

ai,aj∈Fk,i<j

M [ai, aj ] is the affinity

of fragment F k, k = 1, . . . , n.

As an example, consider the affinity matrix in Figure 7 and fragmentation
F={{Name}, {DoB,Illness,Physician}, {ZIP}}. Then, affinity(F) = aff ({Name})
+ aff ({DoB,Illness,Physician}) + aff ({ZIP}) = 0 + (M [d, i] + M [d, p] + M [i, p])
+ 0 = 0 + (20 + 30 + 15) + 0 = 65. With the consideration of affinity, the problem
becomes therefore to determine a correct fragmentation that has maximum affinity.
This is formally defined as follows.

Problem 6.2 Maximum affinity. Given a relation schema R, a set C of well de-
fined constraints over R, and an affinity matrix M , find a fragmentation F of R
such that all the following conditions hold:

(1) F correctly enforces C (Definition 3.3);

(2) F maximizes visibility (Definition 4.1);

(3) @F ′ satisfying the conditions above such that affinity(F ′) > affinity(F).

We can now prove that also the maximum affinity problem is NP-hard .

Theorem 6.3. The maximum affinity problem is NP-hard.
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F1 F2 F3 F4 F5 F6 F7 F8

F3 F4 F5 F6 F7 F8F1

F4 F6 F7 F8F1 F3

F4 F7F1 F3 F6

F7F1 F3 F6

F7F1 F6

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Fig. 8. Graphical representation of the working of Function 7.1

Proof. The proof is a reduction from the NP-hard minimum hitting set prob-
lem [Garey and Johnson 1979], which can be formulated as follows: Given a col-
lection C of subsets of a set S, determine the smallest subset S′ of S such that S′

contains at least one element from each subset in C.
Let R = S ∪ {ac}, where ac is an element different from any element in S. We

can observe that any singleton set in C corresponds to an element that is part of a
solution S′ and therefore it can be directly inserted in S′. Also, whenever there are
two sets si,sj in C with si ⊂ sj , sj is redundant and can be removed from C since
a solution S′ that includes an element in si includes also an element sj . Thus, let
CF = {s ∈ C: |s| > 1 and ∀si, sj ∈ C, i 6= j, si 6⊂ sj} be the set of constraints,
and let AF = {a∈R: {a}6∈ C} be the set of attributes to be fragmented. It is easy
to see that he construction of an instance of the maximum affinity problem from
an instance of the minimum hitting set problem is polynomial in C. Also, ac is
an attribute that is not involved in any constraint in CF . Consider now an affinity
matrix such that M [ai, aj ]= 1 iff ai = ac or aj = ac; M [ai, aj ]= 0, otherwise.

Since M [ai, aj ]= 0 when ai, aj 6= ac, a fragmentation algorithm that maximizes
the affinity computes a fragmentation where fragment F c containing ac includes
the maximum number of attributes that can be inserted without violating the con-
straints; the affinity of the computed fragmentation corresponds to the cardinality
of F c. It is also easy to see that maximizing the number of attributes of F c is
equivalent to minimizing the size of the set S′ of attributes that contains at least
one attribute from each constraint. Consequently, a maximal affinity fragmenta-
tion F of R, with respect to M , satisfying all constraints in CF corresponds to a
solution for the minimum hitting set problem. In particular, given fragment F c,
the solution of the minimum hitting set problem is S′ = R − F c.

In the following, we describe a heuristic approach for Problem 6.2.

7. A HEURISTIC APPROACH TO MAXIMIZE AFFINITY

Our heuristic approach to determine a fragmentation that maximizes affinity ex-
ploits a greedy approach that, at each step, combines fragments that have the
highest affinity. The heuristic starts by putting each attribute to be fragmented
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Function 7.1 Vector-minimal fragmentation with the affinity matrix.

FRAGMENT(A ToPlace,C ToSolve)
/* initial solution with a fragment for each attribute */
F := ∅
FragmentIndex := ∅
for i=1. . . |A ToPlace| do

F i := {ai}
F := F ∪ {F i}
FragmentIndex := FragmentIndex ∪ {i}

/* cells in M corresponding to constraints are invalidated */
for each {ax,ay} ∈ C ToSolve do

M [Fmin(x,y),Fmax(x,y)] := −1
C ToSolve := C ToSolve − {{ax,ay}}

/* extract the pair of fragments with maximum affinity */
Let [F i,F j ], i<j and i, j ∈ FragmentIndex, be the pair of fragments with maximum affinity
while |FragmentIndex| > 1 and M [F i, F j ] 6= −1 do /* merge the two fragments */

F i := F i∪F j

F := F − {F j}
FragmentIndex := FragmentIndex − {j}
/* update the affinity matrix */
for each k∈FragmentIndex : k 6=i do

if M [Fmin(i,k),Fmax(i,k)]=−1 or M [Fmin(j ,k),Fmax(j ,k)]=−1 then
M [Fmin(i,k),Fmax(i,k)] := −1

else
for each c∈C ToSolve do

if c⊆(F i∪Fk) then
M [Fmin(i,k),Fmax(i,k)] := −1
C ToSolve := C ToSolve − {c}

endif
if M [Fmin(i,k),Fmax(i,k)]6=−1 then

M [Fmin(i,k),Fmax(i,k)] := M [Fmin(i,k),Fmax(i,k)] + M [Fmin(j ,k),Fmax(j ,k)]
endif

endif
Let [F i,F j ], i<j and i, j ∈ FragmentIndex, be the pair of fragments with maximum affinity

return(F)

Fig. 9. Function that finds a vector-minimal fragmentation with maximal affinity

into a different fragment. The affinity between pairs of fragments is the affinity
between the attributes contained in their union (as dictated by the affinity ma-
trix). Then, the fragments with the highest affinity, let call them F i and F j , are
merged together (if this does not violate constraints) and F i is updated by adding
the attributes of F j , while F j is removed. The affinity of the new version of F i

with respect to any other fragment F k is the sum of the affinities that F k had with
the old version of F i and F j . The heuristic proceeds in a greedy way iteratively
merging, at each step, the fragments with highest affinity until no more fragments
can be merged without violating the constraints. Figure 8 gives a graphical repre-
sentation of our heuristic approach; at each step light grey boxes denote the pair
of fragments with highest affinity. The correctness of the heuristics lies in the fact
that, at each step, the affinity of the resulting fragmentation can only increase. As
a matter of fact, it is easy to see that affinity is monotonic with respect to the
dominance relationship (see Lemma 7.3 in Section 7.2).

The following subsection describes the function implementing this heuristic ap-
proach. In the function, instead of controlling constraints when determining
whether two fragments can be merged, we exploit the affinity matrix and set to
−1 the affinity of fragments whose merging would violate the constraints (thus
ignoring them in the evaluation of fragments to be merged).
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7.1 Computing a vector-minimal fragmentation with the affinity matrix

Function 7.1 takes as input a set A ToPlace of attributes to be fragmented and a set
C ToSolve of well defined non-singleton constraints. It computes a vector-minimal
fragmentation F of A ToPlace, where at each step the fragments to be merged are
chosen according to their affinity. In the following, with a slight abuse of notation,
we use M [F i,F j ] to denote the cell in the affinity matrix identified by the smallest
attribute in F i and F j , according to the order set on attributes appearing in non
singleton constraints.

First, the function initializes F to a fragmentation having a fragment F i for each
of the attributes ai in A ToPlace, and creates a set FragmentIndex that contains
the index i of each fragment F i∈F . The function also checks all constraints in
C ToSolve composed of two attributes only, and sets to −1 the corresponding cells
in the affinity matrix. These constraints are then removed from C ToSolve. In
general, at each iteration of the algorithm, for each i < j, M [F i,F j ] is equal to −1
if fragment F i∪F j violates some constraints.

Function fragment then executes a while loop that, at each iteration, merges
two fragments in F as follows. If there are still pairs of fragments that can be
merged, that is, there are still cells in M different from −1, the function iden-
tifies the cell [F i,F j ] (with i<j ) with the maximum value in M . Then, F i is
updated to the union of the two fragments and F j is removed from F . Also, j is
removed from FragmentIndex, since the corresponding fragment is no more part of
the solution. The function then updates M . In particular, for each fragment F k,
k∈{FragmentIndex−i}, cell M [F i,F k] is set to −1 if either cell M [F i,F k] or cell
M [F j ,F k] is −1, or if F i∪F k violates at least a constraint still in C ToSolve. In
this latter case, the violated constraints are removed from C ToSolve. Otherwise,
cell M [F i,F k] is summed with the value in cell M [F j ,F k].

Example 7.2. Figure 10 presents the execution, step by step, of function frag-
ment represented in Figure 9, applied to the example in Figure 2 and considering
the affinity matrix in Figure 7. The left hand side of Figure 10 illustrates the evo-
lution of fragments and of the chosen pair F i, F j. The central part of Figure 10
illustrates the evolution of matrix M , where dark grey columns represent fragments
merged with other fragments, and thus removed from the set of fragments. The right
hand side of Figure 10 illustrates the set C ToSolve of constraints to be solved: if
an attribute belongs to constraint ci in C ToSolve, the corresponding cell is set to
×; if ci is removed from C ToSolve, the cell is set to X. At the beginning, all con-
straints are not solved and there is a fragment F for each attribute in A ToPlace.
First, M is updated by setting to −1 the cells representing constraints involving only
two attributes, that is, constraints c1, c2, c3, and c4, which are then removed from
C ToSolve. Function fragment chooses the cell in M with the highest affinity, that
is, M [F 2,F 5] = 30. Consequently, F 5 is merged with F 2 (the 5th column becomes
dark grey to denote that fragment F 5 does not exist anymore). Then, values in the
affinity matrix are updated: cell M [F 2,F 3] is set to −1, since it represents fragment
{d,p,z} that violates constraint c6, which is therefore removed from C ToSolve; cell
M [F 2,F 4] is set to M [F 2,F 4] + M [F 4,F 5] = 20 + 15 = 35. At the next iteration,
cell M [F 2,F 4] is chosen and F 4 is merged with F 2 (the 4th column becomes dark
grey to denote that fragment F 4 does not exist anymore). Then, cell M [F 2,F 3] is
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F1={n}
F2={d}
F3={z}
F4={i}
F5={p}

F1 F2 F3 F4 F5

F1 10 5 25 15
F2 5 20 30
F3 10 5
F4 15
F5

c1 c2 c3 c4 c5 c6

n × × × ×
d × × ×
z × × ×
i × ×
p × ×

F1={n}
F2={d}
F3={z}
F4={i}
F5={p}

F1 F2 F3 F4 F5

F1 -1 -1 -1 -1
F2 5 20 30
F3 10 5
F4 15
F5

c1 c2 c3 c4 c5 c6

n X X X X
d X × ×
z X × ×
i X ×
p X ×

[F i,F j ] = [F2,F5]

F1={n}
F2={d,p}
F3={z}
F4={i}

F1 F2 F3 F4 F5

F1 -1 -1 -1
F2 -1 35
F3 10
F4

F5

c1 c2 c3 c4 c5 c6

n X X X X
d X × X
z X × X
i X ×
p X X

[F i,F j ] = [F2,F4]

F1={n}
F2={d,p,i}
F3={z}

F1 F2 F3 F4 F5

F1 -1 -1
F2 -1
F3

F4

F5

c1 c2 c3 c4 c5 c6

n X X X X
d X X X
z X X X
i X X
p X X

Fig. 10. An example of the execution of Function 7.1

set to −1, since it was −1 in the previous iteration as well. The final solution is
F={{n},{d,p,i},{z}}, with affinity equal to 65. (Note that the solution computed
by function fragment in Figure 5, and represented in Figure 6, has 3 fragments as
the solution computed here, but its affinity is 20.)

We note that Function 7.1 can be used to simulate Function 5.7 sorting the
attributes in the order with which they are considered by the algorithm in Figure 5
and considering an initial affinity matrix containing 0 as affinity value between each
pair of attributes. The ordering of attributes can be simply computed by iteratively
calculating the number of unsolved constraints N con[a ] involving each attribute
a , and inserting, as next element of the ordered list, the attribute that maximizes
N con[a ]. Since the affinity matrix contains values 0 and −1 only, the order for
choosing fragments as the next maximum affinity pair is the same of Function 5.7.

7.2 Correctness and complexity

Before proving the correctness and complexity of our heuristic, we introduce two
lemmas proving the monotonicity property of fragmentation affinity with respect
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to the dominance relationship ¹ and the correctness of the matrix computation,
respectively.

Lemma 7.3 Monotonicity. Let R be a relation, M be an affinity matrix for R,
C be a set of well defined constraints, and F and F ′ be two correct fragmentations
for R. If F¹F ′ ⇒ affinity(F)≤affinity(F ′).

Proof. By definition, given two fragmentations F={F 1,. . . ,Fn} and F ′ =
{F 1

′, . . . ,Fm
′} such that F≺F ′, then VF [a ]⊆VF ′ [a ], ∀a∈{a∈R:{a}6∈C}. There-

fore, for each a such that VF [a ]=VF ′ [a ], the affinity of the two fragments F and
F ′ containing a in F and F ′ respectively, is the same. For each a such that
VF [a ]⊂VF ′ [a ], the affinity of the two fragments F and F ′ containing a in F and F ′
respectively, is such that aff (F )≤aff (F ′). In fact, aff (F ′)=aff (F )+

∑
M [ai, aj ],

∀ai∈F ′, aj∈F ′−F , with i < j. Since M [ai, aj ] is always a non negative value, it
holds that if F≺F ′, then affinity(F)≤affinity(F ′).
If F=F ′ it is straightforward to see that affinity(F)=affinity(F ′).

Lemma 7.4. At the beginning of each iteration of the while loop of function
fragment in Figure 9, M [F i,F j ] = −1 ⇔ ∃c ∈ C:c⊆(F i∪F j).

Proof. At initialization, function fragment checks constrains involving exactly
two attributes {ax,ay} and sets to −1 the cell in M corresponding to the pair of
fragments Fx={ax} and F y={ay}. Also, all these constraints are removed from
C ToSolve.

When function fragment merges two fragments F i and F j (i<j ), j is removed
from FragmentIndex. For each k in FragmentIndex but i , cell M [Fmin(i,k),Fmax(i,k)]
is set to −1 if either M [Fmin(i,k),Fmax(i,k)] or M [Fmin(j ,k),Fmax(j ,k)] were −1
before the update. Indeed, if either F i∪F k or F j∪F k violated a constraint before
merging F i with F j , also F i∪F k violates the same constraint after the update (i.e.,
∃c∈C such that c⊆F i or c⊆F j) since F i is set to F i∪F j . Note that constraints
removed from C ToSolve are represented by −1 in M . Also, when F i∪F k is checked
against constraints in C ToSolve the algorithm looks for constraints representing a
subset of F i∪F k. If such constraints exist, M [Fmin(i,k),Fmax(i,k)] is set to −1 and
they are removed from C ToSolve, since value −1 in M represents them.

Theorem 7.5 Correctness. Function fragment in Figure 9 terminates and
finds a vector-minimal fragmentation (Definition 5.5).

Proof. Let R be a relation schema, and C be a set of well defined constraints.
Consider the sets CF = {c∈C : |c | >1}, and AF = {a∈R: {a}6∈C}.

Function fragment always terminates. In fact, the while loop terminates be-
cause at each iteration the number of indexes in FragmentIndex decreases by one,
and the iterations are performed only if FragmentIndex contains at least two in-
dexes.

We now prove that a solution F computed by function fragment over AF and
CF is a vector-minimal fragmentation. According to Definition 5.5 of minimality, a
fragmentation F is minimal if and only if (1) it is correct, (2) it maximizes visibility,
and (3) @F ′:F≺F ′ that satisfies the two conditions above.

(1) Function fragment starts with a simple correct fragmentation (F i = {ai},
for all ai∈AF ), and it iteratively merges only fragments that form a correct
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fragment, since the pair of fragments to be merged is extracted as the pair
with maximum affinity and the fragments are merged only if their affinity is
a positive value. By Lemma 7.4, only fragments whose union does not violate
constraints are merged. We can therefore conclude that F correctly enforces C.

(2) Since each attribute in AF is initially inserted exactly into one fragment, and
when two fragments are merged only the result of their union is kept in F , the
condition of maximal visibility is satisfied.

(3) By contradiction, let F ′ be a fragmentation satisfying the constraints in CF
and maximizing visibility, such that F≺F ′. Let VF and VF ′ be the fragment
vectors associated with F and F ′, respectively.
As already proved in the proof of Theorem 5.9, F ′ contains a fragment VF ′ [ai]
that is the union of two different fragments, VF [ai] and VF [aj ], of F . We need
then to prove that function fragment cannot terminate with two different
fragments whose union does not violate any constraint.
Let Fh and F k be the two fragments computed by function fragment, cor-
responding to VF [ai] and VF [aj ], respectively. Assume, without loss of gen-
erality, that h < k (since the proof in the case h > k immediately follows by
symmetry). By Lemma 7.4, M contains non-negative values only for pairs of
fragments whose union generates a correct fragment, and therefore function
fragment cannot terminate with fragmentation F since M still contains a non
negative value to be considered (M [Fh,F k]). This generates a contradiction.

We can conclude that function fragment computes a vector-minimal fragmenta-
tion.

Theorem 7.6 Complexity. Given a set C={c1, . . . , cm} of constraints and a
set A={a1, . . . an} of attributes the complexity of function fragment(A,C) in Fig-
ure 9 is O(n3m) in time.

Proof. The first for and for each loops of function fragment cost O(n +
m). The while loop is performed O(n) times, since at each iteration an element
from FragmentIndex is extracted. The for each loop nested into the while loop
updates the cells corresponding to fragments F i and F j in the affinity matrix.
While j is simply removed from FragmentIndex, and the column F j in the matrix
is simply ignored, the update of the cells corresponding to F i, which are O(n) in
number, costs O(n2m) because all the constraints in C ToSolve containing F i∪F j

are considered. Each extraction of the pair of fragments with maximum affinity
from M simply scans (in the worst case) the affinity matrix, and its computational
cost is O(n2) in time. The overall time complexity is therefore O(n3m).

8. QUERY EXECUTION

Fragmentation of a relation R implies that only fragments, which are stored in
place of the original relation to satisfy confidentiality constraints, are used for query
execution. The fragments can be stored on a single server or on multiple servers.
The server (or servers) storing the fragments while needs not be trusted with respect
to the confidentiality, since accessing single fragments or encrypted information does
not expose to any privacy breach, it is trusted for correctly evaluating queries on
fragments (honest but curious).
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Fig. 11. Interactions among users and server storing the fragments

Users who are not authorized to access the content of the original relation R have
only a partial view on the data, meaning that they can only access the fragments.
A query submitted by a user with a partial view can be presented directly to the
server(s) storing the desired fragment. Users who are authorized to access the
content of the original relation have a full view on the data and can present queries
referring to the schema of the original relation. The queries issued by users with
full view are then translated into equivalent queries operating on the encrypted and
fragmented data stored on the server(s). The translation process is executed by a
trusted component, called query mapping component , that is invoked every time
there is the need to access sensitive information (see Figure 11). In particular, the
query mapping component receives a query Q submitted by a user with full view
along with the key k possibly needed for decrypting the query result computed by
the server, and returns the result of query Q to the user. However, since every
physical fragment of R contains all the attributes of R, either in encrypted or in
clear form, no more than one fragment needs to be accessed to respond to Q. The
query mapping component therefore maps the user’s query Q onto an equivalent
query Qs, working on a specific fragment. The server executes the received query Qs

on the required fragment and returns the result to the query mapping component.
Note that whenever query Q may involve attributes that do not appear in the
clear form in the selected fragment, the query mapping component may need to
execute an additional query Qu on the decrypted results of Qs, which is in charge
of enforcing all conditions that cannot be evaluated on the physical fragment or of
projecting the attributes reported in the select clause of query Q. In this case, the
query mapping component decrypts the result received, executes query Qu on it,
and returns the result of Qu to the user. We now describe the query translation
process in more details.

We consider select-from-where SQL queries of the form Q =“select AQ from
R where C”, where AQ is a subset of the attributes of R, and C is a con-
junction of basic conditions c1, . . . , cn of the form (a op v) or (aj op ak), with
aj and ak attributes of R, v constant value, and op comparison operator in
{=, 6=, >,<,≤,≥}. Let us then consider the evaluation of query Q on physical
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fragment F e
i (salt ,enc,ai1 , . . . , ain), where salt is the primary key, enc contains the

encrypted attributes, and ai1 , . . . , ain
are the plaintext attributes (see Section 3).

Suppose, for generality, that C contains some conditions that involve attributes
stored in the clear form in F e

i and some others that cannot instead be evaluated
on F e

i . The query mapping component translates the original query Q into a query
Qs operating on the physical fragment and defined as:

select AQ ∩ {ai1 , . . . , ain
}, salt , enc

from F e
i

where
∧

cj∈Ce
i
cj

where Ce
i is the set of basic conditions in C that can be evaluated on physical

fragment F e
i , that is, Ce

i = {cj | cj ∈ C ∧ attributes(cj) ∈ F e
i}, with attributes(cj)

representing the attributes appearing in cj . Note that the salt and enc attributes
in the select clause of Qs are specified only if the select or where clauses of
the original query Q involve attributes not appearing in clear form in the fragment.
The query mapping component then decrypts the tuples received and executes on
them a query Qu defined as:

select AQ

from Decrypt(Qs, k)
where

∧
cj∈{C−Ce

i } cj

where Decrypt(Qs, k) denotes a temporary relation including the tuples returned by
Qs and where attribute enc has been decrypted through key k. The where clause
of Qu includes all conditions defined on attributes that do not appear in clear form
in the physical fragment and that can be only evaluated on the decrypted result.
The final result of query Qu is then returned to the user.

Note that since we are interested in minimizing the query evaluation cost, a query
optimizer can be used to select the fragment that allows the execution of more
selective queries by the server, thus decreasing the workload of the application and
maximizing the efficiency of the execution [Chaudhuri 1998].

Example 8.1. Consider the relation in Figure 2(a) and its fragments in Fig-
ure 3.

—Consider a query Q retrieving the Social Security Number and the name of the pa-
tients whose illness is obesity and whose physician is D. Warren. Since fragment
F e

3 contains both Illness and Physician, it can evaluate both the conditions in
the where clause and is chosen for query evaluation. Figure 12 illustrates the
translation of Q to queries Qs.3 executed by the server on fragment F e

3 (notation
Qs.x indicates a query executed by the server on fragment x), and Qu executed by
the application. Query Qs.3 returns to the application only the tuples belonging
to the final result. The application just needs to decrypt them for projecting the
SSN and Name attributes.

—Consider a query Q′ retrieving the Social Security Number and the name of the
patients whose illness is obesity, whose physician is D. Warren, and whose ZIP
is 94139. Fragment F e

3 contains both Illness and Physician, thus allowing
the evaluation of two out of three conditions. Fragment F 2 contains only ZIP
and allows the evaluation of one out of three conditions. The query mapping
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Original query on R Translation over encrypted fragments

Q := select SSN, Name
from MedicalData

where Illness=‘obesity’
and
Physician=‘D. Warren’

Qs.3 := select salt, enc
from Fe

3

where Illness=‘obesity’and
Physician=‘D. Warren’

Qu := select SSN, Name
from Decrypt(Qs.3, Key)

Q′ := select SSN, Name
from MedicalData

where Illness=‘obesity’
and
Physician=‘D. Warren’
and
ZIP=‘94139’

Q′s.3:= select salt, enc
from Fe

3

where Illness=‘obesity’and
Physician=‘D. Warren’

Q′u := select SSN, Name
from Decrypt(Q′s.3, Key)
where ZIP=‘94139’

Fig. 12. An example of query translation over a fragment

component therefore translates query Q′ into queries Q′s.3 executed by the server
on fragment F e

3, and Q′u executed by the application (see Figure 12). Since ZIP
does not appear in clear form in fragment F e

3, the condition on it needs to be
evaluated by the application, which also performs the projection of the SSN and
Name attributes after decrypting the result computed by Q′s.3.

Note that queries whose where clause contains negated conditions can be easily
managed by the query mapping component since whenever a basic condition c can
be evaluated on a physical fragment, also its negation (i.e., not(c)) can be evaluated
on the same fragment. Queries whose where clauses contain disjunctions need
special consideration. As a matter of fact, according to the semantics of the or, any
condition that cannot be evaluated over a fragment but that is in disjunction with
other conditions that can be evaluated on the fragment cannot be simply evaluated
on the result returned by the server (like done in the case of conjunction). There
are therefore three possible scenarios. 1) The query conditional part can be reduced
to a conjunctive normal form; then the query mapping and evaluation can proceed
as illustrated in the conjunctive case above. 2) The query conditional part can be
reduced to a disjunctive normal form where all components can be evaluated over
different fragments; in this case the query mapping component will ask the server
for the execution of as many queries as the components of the disjunction and will
then merge (union) their results. 3) The query conditional part contains a basic
condition (to be evaluated in disjunction with others) that cannot be evaluated on
any fragment (as it involves a sensitive attribute or attributes that appear in two
different fragments); in this case the query mapping component will need to retrieve
the entire fragment (any fragment will do) and will evaluate the query condition at
its site.
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Fig. 13. Computational time of the algorithms

9. EXPERIMENTAL RESULTS

The heuristic algorithms presented in Sections 5 and 7 have been implemented as C
programs to obtain experimental data and assess the behavior of the algorithms in
terms of execution time and quality of the returned solution. Aiming to a compari-
son of the results computed by our heuristic algorithms to the optimal solutions, we
also implemented two algorithms analyzing the complete solution space computing
the fragmentation with the minimal number of fragments and the one with maxi-
mum affinity. The relation schema we considered in the experiments is composed
of 32 attributes and is inspired by a database of medical information. Taking into
account possible confidentiality requirements we expressed up to 30 confidentiality
constraints. These constraints are well defined (see Definition 2.2) and composed of
a number of attributes varying from 2 to 4 (we did not consider singleton constraints
as they cannot be solved via fragmentation). The content of the affinity matrix has
been produced using a pseudo-random generation function. The experiments have
considered configurations with an increasing number of attributes, from 3 to 32,
taking into account, for every configuration, only the constraints completely fitting
in the selected attributes. The number of constraints for a configuration with n
attributes ranges between n− 3 to n + 1.

Figure 13 compares the time required for the execution of the complete search
algorithms with the heuristic algorithms presented in the paper. Consistently with
the fact that both the problem of minimizing the number of fragments and the
problem of maximizing affinity while satisfying confidentiality constraints are NP-
hard, the two complete search strategies require exponential time in the number of
attributes. The complete search then becomes unfeasible even for a relatively small
number of attributes; with the availability of large computational resources it would
still not be possible to consider large configurations (in our experiments we were
able only to run the complete search for schemas with less than 17 attributes). By
contrast, the time required for the execution of both the heuristic algorithms always
remains low (it is close to 0). This guarantees that both the heuristic algorithms
proposed are applicable to large relational schemas.

Obviously, a successful heuristic presents a good behavior if it combines time
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Fig. 15. Affinity of the solution produced by the complete search and Function 7.1

efficiency with a demonstrated ability to produce good solutions. We therefore
compared the solutions computed by the execution of each of the two heuristic
algorithms with those returned by the corresponding complete search algorithm.

Figure 14 presents the number of fragments obtained by the execution of the
heuristic algorithm computing a vector-minimal fragmentation (Function 5.7) com-
pared with the minimal number of fragments in a solution computed by the com-
plete search for a solution satisfying all the considered constraints. As the graph
shows, in all the cases that allow the comparison, our heuristic has always identified
an optimal solution.

Figure 15 instead compares the affinity of the fragmentation computed through
our heuristic algorithm (Function 7.1) with the optimal affinity produced by the
complete search strategy. As the graph shows, for all the cases that allow the
comparison, the affinity of the solution computed by the heuristic algorithm is
close to the optimal value: the average of the difference is 4.7% and the maximum
percentage difference is around 14.1%.

Together with the effort that has produced the implementation of the two heuris-
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tic algorithms, a parallel development has focused on the integration within a rela-
tional database engine of mechanisms supporting the management of partially en-
crypted relational schemas (Section 8). Like other similar efforts developing novel
database services, we chose the PostgreSQL DBMS, typically considered the most
complete and sophisticated open-source database engine. The integration of the
support for partially encrypted relational tables has required the modification of
a few internal components of the PostgreSQL architecture, integrating within the
database engine the support for the processing of encryption/decryption functions
and adding a few catalog structures. This effort, apart from demonstrating that it
is possible to smoothly integrate this data design option within current database
systems, has clearly shown the viability of the integration between cryptography
and relational structures. The impact on performance of query execution mostly
derives in the prototype from the unavailability of the cleartext representation of
attributes appearing in selection predicates. Decryption functions were shown to
typically exhibit a slight impact on query processing, whose cost is clearly domi-
nated by the costs of other query processing steps.

10. RELATED WORK

A significant amount of research has recently been dedicated to the study of the
outsourced data paradigm. Most of this research has assumed the data to be
entirely encrypted, focusing on the design of techniques for the efficient execution
of queries (Database As a Service paradigm). One of the first proposals towards
the solution of this problem is presented in [Hacigümüs et al. 2002(a); Hacigümüs
et al. 2002(b)], where the authors propose storing additional indexing information
together with the encrypted database. Such indexes can be used by the DBMS to
select the data to be returned in response to a query. In [Damiani et al. 2003] the
authors propose a hash-based index technique for equality queries, together with a
B+ tree technique applicable to range queries. In [Wang and Lakshmanan 2006]
the authors propose an indexing method that, exploiting B-trees, supports both
equality and range queries, while reducing inference exposure thanks to an almost
flat distribution of the frequencies of index values. In [Ceselli et al. 2005; Damiani
et al. 2003] the authors present different approaches for evaluating the inference
exposure for encrypted data enriched with indexing information, showing that even
a limited number of indexes can greatly facilitate the task for an attacker wishing
to violate the confidentiality provided by encryption.

The first proposal suggesting the storage of plaintext data, while enforcing a
series of privacy constraints is presented in [Aggarwal et al. 2005]. The main dif-
ference with the work proposed in this paper is that in [Aggarwal et al. 2005] the
authors suppose data to be stored on two remote servers, belonging to two different
service providers, which never exchange information. This choice also forces to de-
sign a fragmentation schema with at most two separate fragments. The approach
presented in our paper removes all these restrictions and appears more adequate
to the requirements of real scenarios. Our approach may force the use of a greater
amount of storage, but in typical environments this presents a smaller cost than
that required for the management and execution of queries on remote database
servers managed by fully independent third parties.
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Other proposals related to our work can be found in [Biskup et al. 2008; Biskup
and Lochner 2007], where the authors exploit functional dependencies to the aim of
correctly enforcing access control policies. In [Biskup and Lochner 2007] the authors
propose a policy based classification of databases that, combined with restriction
of the query language, preserves the confidentiality of sensitive information. The
classification of a database is based on the concept of classification instance, which
is a set of tuples representing the combinations of values that need to be protected.
On the basis of the classification instance, it is always possible to identify the set
of allowed queries, that is, the queries whose evaluation return tuples that do not
correspond to the combinations represented in the classification instance. In [Biskup
et al. 2008] the authors define a mechanism for defining constraints that reduce the
problem of protecting the data from inferences to the enforcement of access control
in relational databases.

Our work may bring some resemblance with the work of classifying information
while maximizing visibility [Dawson et al. 2002]. However, while the two lines
of work share the goal of ensuring protection and minimizing security measures
enforcement, the consideration of fragmentation and encryption on the one side
and security labeling on the other make the problems considerably different.

The problem of fragmenting relational databases while maximizing query effi-
ciency has been addressed by others in the literature and some approaches have
been proposed [Navathe et al. 1984; Navathe and Ra 1989]. However, these ap-
proaches are not applicable to our problem since they are only aimed at performance
optimization and do not take into consideration protection requirements.

11. CONCLUSIONS

We presented a model and a corresponding concrete approach for the definition
and management of privacy requirements in data collections. Our work provides a
direct response to the emerging demand by individuals as well as privacy regulators.

Besides the technical contribution, our work can represent a step towards the
effective enforcement, as well as the establishment, of privacy regulations. Technical
limitations are in fact claimed as one of the main reasons why privacy cannot be
achieved and, consequently, regulations not be put into enforcement. Research
along the line presented here can then help in providing the building blocks for a
more precise specification of privacy needs and regulations, as well as their actual
enforcement, together with the benefit of a clearer and more direct integration of
privacy requirements within existing ICT infrastructures.

Several open issues still remain to be addressed such as: the protection of frag-
mented data when the information stored in the fragments may change over time,
or the adoption of other strategies for guaranteeing that the published data do not
reveal information on the sensitive associations (confidentiality constraints).
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